Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online: 255
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2022  |  Volume : 17  |  Issue : 4  |  Page : 383-391

Anti-nociceptive effect of black seed oil on an animal model of chronic constriction injury


1 Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
2 Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, I.R. Iran

Correspondence Address:
Alireza Abed
Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan
I.R. Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1735-5362.350239

Rights and Permissions

Background and purpose: Traditionally, Nigella sativa L. has been known as a medical intervention to treat numerous diseases. This study aimed at investigating the antihyperalgesic effect of black seed oil (BSO) in an experimental model of neuropathic pain. Experimental approach: Chronic constriction injury (CCI) was performed under anesthesia. The sciatic nerve was ligated with four loose ties. Two separate protocols were used to administer BSO. In chronic treatment, rats were given daily doses of BSO (250, 500, and 1000 mg/kg p.o.) from the 1st day until the 21st post-CCI day. While, in acute treatment, BSO (250, 500, and 1000 mg/kg p.o.) was administered only on the 7th, 14th, and 21st days. CCI and sham groups were given almond oil according to the same schedule. Behavioral scores were determined by evaluation of the paw withdrawal in the plantar, Von Frey, and acetone tests, on the 7th, 14th, and 21st days. Findings/Results: Our results showed that CCI leads to significant allodynia and hyperalgesia in the ipsilateral paw after surgery. Chronic administration of BSO (500 and 1000 mg/kg) obviously attenuated heat hyperalgesia and mechanical allodynia. However, daily administration of BSO did not alter cold allodynia. Nevertheless, when BSO was administered, 30 min before the pain assessment tests, hypersensitivity was not improved in the treated animals. Conclusion and implications: These results demonstrated BSO can inhibit neuropathic pain progression and suggests a potential use of BSO to manage hyperalgesia and allodynia. However, additional research is necessary to approve BSO effectiveness, in neuropathic pain conditions.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed406    
    Printed10    
    Emailed0    
    PDF Downloaded61    
    Comments [Add]    

Recommend this journal